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Abstract

The computational heat and mass transfer modeling approach presented in this paper emphasizes the influence of

undercoolings on dendrite structure formations of the alpha phase crystals inherent to advanced phases of an aluminum

brazing netshape manufacturing sequence. In the first segment of this work, the empirical evidence involving the out-

come of the solidification process and its kinetics was presented. In this paper, simulation of the alpha phase crystal

pattern formation is corroborated with empirical findings obtained by utilizing an AA4343/AA3003 brazing sheet

exposed to controlled atmosphere brazing (CAB) in ultra-high purity nitrogen.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The solid solution solidification is a typical phase

change phenomenon that takes place in an Al + Si sys-

tem exposed to a state-of-the-art CAB metal joining.

The outcome of the process is a brazed joint structure;

see the topology of the related physical domain in Fig.

1, consult also [1]. Solidification microstructures feature

both alpha phase and irregular eutectic. An effort is

made to simulate an appearance of alpha phase den-

drites with fully selected pattern either in rich or scarce

dendrite populations, see Fig. 1a and b in Part 1 of these
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twin papers [2]. The empirical evidence presented indi-

cates a small population of dendrites with fairly well se-

lected pattern if the quench is facilitated from a lower

peak brazing temperature [2]. This paper offers compu-

tational modeling of this dendrite pattern formation.

Various models have been used to predict defects and

patterns in alloy solidification processing [3–5]. In par-

ticular, phenomenological two- and three-phase models

have been analyzed for porosity formation in aluminum

alloys during casting [6].

The modeling of the solidification process performed

in this study assumes that the set of relevant material

parameters has the values invariant in time and space

as indicated in Table 1.

The main research objective is modeling of a macro-

pattern of dendrite solidification microstructures for-

med at at least two different cooling rates during the
ed.
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Nomenclature

C concentration, dimensionless

D diffusion coefficient, m2/s

G solid fraction, dimensionless

J solute diffusion flux, s�1

K curvature, m�1

k partition coefficient, dimensionless

me liquidus slope, K/at.%

n unit vector orthogonal to the calculation do-

main boundary, m

Q latent heat of solidification, J/m3

T temperature, K

t time, s

x, z orthogonal coordinates, m

Z front height or height of perturbation, m

Greek symbols

C capillarity constant, surface tension func-

tion, K m

d noise amplitude, m

e anisotropy parameter, dimensionless

j specific heat, J/m3 K

k thermal conductivity, W/m K, stability

wavelength, m

l kinetic coefficient, m/s K

s relaxation time, s
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aluminum alloy brazing. In order to simulate the solidi-

fication process in brazing of an aluminum alloy, a model

of local nonequilibrium solidification [7] (which adopts

local nonequilibrium at the solid–liquid interface and in-

side the bulk phases) has been chosen. Hence, the model

describes a sharp transition from a chemical partitioning

in solidification to a partitionless solidification at a high

undercooling and large crystal growth velocities, which is

in good agreement with the existing experimental data

[8,9]. Therefore, the following problem is confronted:

How an application of a local nonequilibrium model of

rapid solidification can be applied to relatively moder-

ate/small undercoolings and moderate/small crystal

growth velocities for the conditions characteristic for

joint formation during aluminum brazing [10].
2. Physical domain

The physical domain of interest is located in the

mushy zone within the joint at the clad–core interface

on the melt side, Fig. 1a–c. The bulk of liquid metal is

accumulated under the equilibrium membrane [1], repre-

senting the joint free surface and exposed to the action

of surface tension.
3. System description and mathematical formulation

3.1. Selection of the initial and boundary conditions

The temperature at which the quench starts is deter-

mined as follows. From experimental data, several cases

were selected, see for example Fig. 1 in Part 1 [2]. The

cooling curves were extracted from the CAB thermal

processing sequence; see Fig. 3b [2] (note that the

quench conditions settings during testing were virtually
the same for all experiments with a very small variations

at the start of quench as represented by Fig. 3b [2]). So,

the onset of quench began at 873 K and 883 K, respec-

tively (the nominal concentrations were in the range as

indicated in Table 1, Item 9). These temperatures are

the imposed initial temperatures T0 for respective solid-

ification processes. In addition, using experimental data

related to materials� compositions, see Tables 1 and 2 in

Part 1 [2], the equilibrium liquidus temperature TLE for

hypothesized nominal Si concentrations of the melt (not

necessarily the initial concentration) were assessed from

the phase diagram. The difference between these two

temperatures defines the initial undercooling, i.e.,

DT = TLE � T0. Assessment of the effective Si concen-

tration was based on the following facts: (1) the initial

concentration of the clad in the brazing sheet, (2) diffu-

sion controlled non-equilibrium melting model [11], (3)

the presence of intense solid state Si diffusion prior to

clad melting [12], (4) the presence of Si diffusion in the

joint zone [12], and (4) the presence of core dissolution

during the dwell at the peak brazing temperature prior

to quench [13]. Consequently, in this study, the Si con-

centration of the melt within the calculation domain

prior to quench was assumed to be in the range from

5.5 at.% up to max 8.5 at.%, see Table 1.

In a space–time region of interest, a hypothetical

liquid phase of a binary alloy is assumed to be initially

present. The temperatures of the liquid + solid in the

mushy zone in actual experiments (either T0 = 873 K

or 883 K) are lower than the liquidus temperature for

the given set of nominal concentration of the melt and

were defined from the equlibrium phase diagram. In

other words, TLE = TA + meC0, where TA = 933 K is

the equilibrium temperature of solidification for pure

Al, C0 is the nominal concentration of Si in the molten

alloy prior to quench, and me = �6.6 K/at.%. The entity

me is the slope of the equilibrium liquidus line in the con-



Fig. 1. Physical and calculation domain. Topology of the joint

formation vs. calculation domain. (a) The sample; (b) the joint

zone; (c) calculation domain. Surfaces 1– 4 are the boundaries

of the calculation domain (control volume, CV). CV has the size

of ZT · X. Solute diffusion transfer is calculated within the

advancing control volume (ACV) of the size ZC · X. The height
of a smooth front and the unique parabolic perturbation at an

initial moment are denoted as Z1 and Z2 respectively.
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sidered range of concentrations of Si in the phase dia-

gram of the Al–Si alloy, see Table 1. So, in our equiva-

lent liquid model of the melt + solid solution, the liquid

is undercooled by DT1 = TLE � T01 = 4 K (nominal Si

concentration either 8.5 or 6.9 at.%) and DT2 = TLE �
T02 = 14 K (nominal Si concentration either 5.5 or

6.9 at.%), and the quench starting temperatures are

T01 = 883 K and T02 = 873 K, respectively.

At the initiation of the modeled sequence, the pertur-

bation is located at the smooth planar front representing

the interface between the melt and the solid (close to

substrate) phase, boundary 2, Fig. 1c. Therefore, the

randomly distributed nucleation sites are generated at

that surface. It could be assumed from the experimen-

tally observed microstructure that the volumetric

nucleation has been suppressed. The cause for such sup-

pression could be the relatively small initial undercool-

ing, which is followed by a long period of waiting for

thermodynamically stable nuclei to be formed. Further-

more, with a relatively high crystal growth rate, bulk

liquid is crystallized more rapidly from the substrate.

Let us assume that the origin of the coordinate sys-

tem is placed at the bottom left corner of the calculated

domain, Fig. 1c. In the coordinate system (x,z), initial

conditions for the solid fraction G take the following

form

G ¼
1; if 0 < z < Z1;

1; if 0 < z < Z2 � Aðx� X=2Þ2;
0; otherwise;

8><
>: ð3:1:1Þ

where the initial configuration of the front is defined by:

(a) a smooth front with the height Z1, (b) a unique par-

abolic perturbation with the equation z = Z2 � A(x � X/
2)2, where Z2 is the height of perturbation.

The conditions for the heat removal were established

as follows. The boundary conditions of the first kind

were assumed at boundaries 1 and 2, see Fig. 1c. Tem-

perature is changing in time in accord with measured

experimental cooling rates, Fig. 3b [2], at both top and

bottom boundaries 1 and 2, Fig. 1c. It is also assumed

that during solidification, the cooling rate is constant

until the solidus is reached. At the lateral boundaries 3

and 4 the ‘‘cyclic boundary condition’’ is assumed and

it is devised from a requirement of the periodicity of

the thermal conditions around the calculation domain.

Therefore, the boundary conditions for temperature

are described by:

• At the boundaries 1 (i.e., at z = ZT) and 2 (i.e., at

z = 0), see Fig. 1c,

oT ðt; x; 0Þ
ot

¼ oT ðt; x; ZT Þ
ot

¼ const: ð3:1:2Þ

• At the boundaries 3 (i.e., at x = 0) and 4 (x = X),

T ðt; 0; zÞ ¼ T ðt;X ; zÞ: ð3:1:3Þ

Note that the statement given by Eq. (3.1.2) is fully

consistent with imposed boundary conditions of the

first kind at the boundaries 1 and 2, i.e. T(t,x, 0) =

T(t,x,ZT) = T(t), where T(t) is in accord with cor-

responding empirical data from Fig. 3b [2], if the



Table 1

Material parameters of the Al–Si alloy used in the modeling

Parameter Symbol Units Value Source

1. Al solidification temperature TA K 933 RBa and Mb

2. Thermal diffusivity A m2/s 4 · 10�5 KFc

3. Latent heat of solidification Q J/m3 9 · 108 RBa

4. Specific heat j J/m3 K 2.5 · 106 RBa

5. Liquidus slope (Al + Si) me K/at.% �6.6 Mb

6. Interfacial kinetic coefficient l0 m/s K 0.14 Present work

7. Capillarity constant C0 K m 1.1 · 10�7 RBa

8. Solid–liquid interface tension cd J/m2 0.106 RBa

9. Nominal concentration C0 at.% 5.5, 6.9, 8.5 Present work

10. Interatomic distance a0
d m 5 · 10�10 Mb

11. Diffusion coefficient DL m2/s 5.25 · 10�9 Present work

12. Diffusion speed in bulk liquid VD m/s 28 Present work

13. Interface diffusion speed VDI m/s 20 Present work

14. Partition coefficient ke – 0.144 RBa

15. Adiabatic temperature TQ
d K 360 –

16. Molar mass of Si MSi
d g/mol 28.06 –

17. Molar mass of Al MAl
d g/mol 26.97 –

a Ref. [25].
b Ref. [26].
c Ref. [19].
d The auxiliary parameters, not used in the modeling directly.
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assumption of constant cooling rates is invoked during

the period of solidification. In accord with the cooling

curves obtained experimentally, the cooling rates were

calculated for each of the two experimental conditions

(the initial undercoolings of 14 K and 4 K with cooling

rates of 7 K/s and 4 K/s, respectively, see Figs. 1 and

3b in [2]).
The boundary conditions for mass transfer were de-

fined as follows. The calculation domain is considered
as a region with mass non-penetrating boundaries, i.e.,

there is the absence of mass transfer at boundaries 1–4

of Fig. 1c (note that modeling starts upon an assumed

completion of Si diffusion across the clad–core melt

and lasts a very short period of time of the order of mag-

nitude of 10�1 s). Note that this does not preclude an

eventual presence of an intense Si diffusion prior to

quench. This yields

n � Jj1�4 ¼ 0; ð3:1:4Þ

where n is the unit vector orthogonal to the boundary

of the calculated domain and J is the vector of solute

diffusion flux. The empirical evidence does indicate that

the mass transfer is present prior to solidification of

the melt (see Figs. 4 and 5, [2]), and it is taken into

account by assuming the presence of undercooling at

the given temperature. The initial conditions are defined

as follows

T jt¼0 ¼ T 0 ¼ const:; Cjt¼0 ¼ C0 ¼ const:;

Jjt¼0 ¼ 0;
oC
ot

����
t¼0

¼ 0: ð3:1:5Þ
If a quench leads to rapid solidification, use of a local

non-equilibrium approach to solute diffusion is war-

ranted [14,15]. This approach requires a special condi-

tion at the diffusion front (i.e. at the front of the

concentration profile which would move with the speed

VD = (D/sD)
1/2, here sD represents the time of the

diffusion relaxation) where a sharp concentration dis-

continuity occurs [14]. This sharp discontinuity at the

diffusion front is taken into account by distinguishing

the fluxes J+ and J�, and concentrations C+ and

C� at: (1) the right-hand-side, and (2) the left-hand-side

of the diffusion front, respectively. This leads to a

boundary condition at the diffusion front ‘‘DF’’ in the

following form:

ðJþ � J�ÞjDF ¼ V DðCþ � C�ÞjDFn; ð3:1:6Þ

where n is a normal unit-vector directed along the prop-

agation of the concentration profile.

3.2. Idealizations

The following idealizations of the modeling of the

solidification process were accepted:

1. Molten metal is considered as chemically inert, bin-

ary, non-eutectic alloy, i.e. the phase change is con-

sidered as a solidification into the solid solution

(alpha phase) only. The nominal composition of the

Si in the alloy at the onset of quench is assumed

to be in the range between the initial and the
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corresponding liquidus concentration at a given

temperature, hence an undercooling is present.

2. The system is considered as a non-isothermal, two-

phase system under the constant pressure.

3. Convective mechanisms are neglected.

4. All thermo-physical properties are assumed as

constant.

5. Solute diffusion in liquid is non-Fickian.

6. Solute diffusion during quench in solid is

neglected.

Idealization 1 is elaborated already within the con-

text of the discussion of empirical evidence in Section

3.1, consult also [2]. The most important aspect of

real conditions prior to solidification is a presence of

Si diffusion across the clad–substrate interface and

dissolution of the substrate at the interface (both prior

to quench), thus leading to undercooling at the given

temperature at the onset of solidification. It should

be indicated that the concentration difference between

the liquidus and the nominal values at a given tem-

perature for the whole range of experimental conditions

presented in Fig. 7, [2] (i.e., between 873 and 893 K) is in

the range between 0% and 2.2%. As indicated in [13] the

dissolution may reduce the Si concentration in the melt

by up to 3.2% at 893 K with a smaller decrease at lower

temperatures. So, in this study, the nominal concentra-

tion of Si in melt prior to quench is assumed to be within

this margin to account for: (1) first an increase in Si con-

centration during melting (toward liquidus), and then

(2) decrease of Si concentration during the dwell prior

to quench, due to diffusion and dissolution at the sub-

strate interfaces.

Idealization 5 introduces a non-Fickian mechanism

of solute diffusion and gives evidence that the solute

propagates with a finite diffusive speed VD. As is well

known, Fick�s first law does not introduce in the model

this finiteness, and it can be applied when the velocity of

the process evolution is much smaller than the diffusive

speed. In the case of rapid solidification, i.e. when the

solidification speed can be of the order of magnitude

(or even greater than the order of magnitude) of the dif-

fusion speed in the bulk phase, i.e. V � VD, one needs to

take into account the finiteness of the solute diffusive

propagation. In such a case, the connection between

the concentration gradient and the diffusion flux will

be defined not as an instant, but as inter-related by a

relaxation law [7,16]. Taking the finiteness of the solute

propagation into account promotes the possibility that a

high-rate solidification can be modeled. Thus, in the

present model, regardless of an apparently small solidi-

fication velocity (Fig. 9, [2]), the finiteness of the solute

diffusive propagation is taken into account. For the

Al + Si system under consideration, the value of VD

can be calculated by using Eqs. (3) and (4) from [16]

(see Table 1 as well).
3.3. Governing equations

The set of governing equations for rapid solidifica-

tion case developed in [14,17] must be extended for the

non-isothermal solidification as considered here. By

introducing the heat diffusion equation, the governing

equations used in the present modeling are as follows

[18]

j
oT
ot

¼ r � ðkrT Þ þ Q
oG
ot

; ð3:3:1Þ

o

ot
½ð1� GÞCL þ kGCL� þ r � J ¼ 0; ð3:3:2Þ

sD
oJ

ot
þ Jþ Dð1� GÞrCL ¼ 0; ð3:3:3Þ

oG
ot

¼ r � ½ð1� GÞV�; ð3:3:4Þ

CS ¼ kCL: ð3:3:5Þ

Here CL and CS are the concentrations of solute in the

liquid and the solid respectively, and 0 6 G 6 1 is the

solid fraction in a local volume of the system.

Eq. (3.3.2) describes the mass balance in the local vol-

ume of the two-phase mushy zone. Eq. (3.3.3) describes

a modified Fick�s law in a linear approximation (which

takes into account a relaxation of the solute diffusion

flux J). At low velocities of solidification, V� VD,

sD ! 0, and Eq. (3.3.3) transfers into the classical Fick�s
law, i.e., J = �D(1�G)$CL, where V is the projection of

the solidification velocity vector V on the normal vector

n to the interface. That is true for a description of the

local equilibrium mass transfer in a two-phase mushy

zone for the solidification of a binary system [15]. At

high velocities, V � VD the relaxation term sDoJ/ot in

Eq. (3.3.3) qualitatively changes the mechanism of mass

transfer. Specifically, as has been analyzed in [7], with

taking into account the relaxation of the solute diffusion

flux J, the concentration profile does not occur, and a

chemically partitionless solidification process proceeds

with VP VD.

Eq. (3.3.4) describes evolution of the solid volume

fraction G (see for details of the derivation and the fea-

tures of this equation in Ref. [15]). Concentration differ-

ence at the interface involving Eq. (3.3.5) is dependent

on the non-equilibrium solute partitioning parameter k

which is a function of the velocity V.

In order to take into consideration the non-equilib-

rium solidification, a ‘‘temperature-concentration–veloc-

ity’’ relationship must be introduced (see, e.g., Ref. [19]

and references therein). This relationship can be consid-

ered as being identical to the velocity dependent Gibbs–

Thomson equation for a binary system. This equation

infers:
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T I ¼ TA þ mCL þ CðhÞ þ o2CðhÞ
oh2

� �
K � V =lðhÞ; ð3:3:6Þ

where h is the angle between the normal to the interface

and the z-axis. Together with Eq. (3.3.5), the expression

given by Eq. (3.3.6) defines the temperature TI at the

solid–liquid interface as a function of the non-equilib-

rium chemical composition CL. From Eq. (3.3.6) a non-

linear equation for V is obtained in the form

V ¼ lðhÞ½DT � DT CðV Þ � DTNðV Þ � DTR � DT T�;
ð3:3:7Þ

where DT = TA + meC0 � T0 represents the total initial

undercooling, as discussed in [2], and the respective def-

initions of the various undercooling contributions were

given in Table 2 [2]. In Eqs. (3.3.6) and (3.3.7) the func-

tions of the surface tension C(h) and interfacial kinetics

l(h) are given by the expressions

CðhÞ ¼ C0½1þ eC cos 4ðh � hCÞ�;
l ¼ ~l½1� el cos 4ðh � hlÞ�; ð3:3:8Þ

which are true for the fourth-fold symmetry of the grow-

ing crystal. Here eC and el are the anisotropy parameters

(eC, el � 1), and hC and hl are the angles between the

direction of growth and directions along which the func-

tions C(h) and l(h) are minimal.

As is known, an introduction of stochastic parame-

ters, i.e. the fluctuations in a deterministic model, allows

one to model the same complex patterns that were ob-

served. Taking into account the fluctuations in the

growth pattern by using stochastic noise at the interface,

we adopt the kinetic coefficient ~l in Eq. (3.3.8) in the

form as follows:

~l ¼ l0½1þ dgðt; x; zÞ�; ð3:3:9Þ

where d P 0 represents the noise amplitude, g(t,x,z) is a
random number uniformly distributed in [�1;1] at the

solid–liquid interface at moment t. With d > 0, Eq.

(3.3.7) implies a local difference in the interface velocity

V. To calculate the mean curvature K (note DTR =

�CK) at any point of the interface where 0 < G < 1,

one can assume the following relationship:

K ¼ N s � N f

2N 0R
: ð3:3:10Þ

In Eq. (3.3.10) the following designations are accepted:

Ns is the solid fraction of G at all sites of a growing crys-

tal within a circle of a diameter 2R; Nf is the solid frac-

tion of G corresponding to a planar interface; finally, N0

is the total number of sites in the circle.
4. Modeling of the dendritic growth

The main problem to be solved in handling the sys-

tem of Eqs. (3.3.1)–(3.3.5) is related to the nature of
the equations of the solute (3.3.2) and (3.3.3), and heat

diffusion (3.3.1). The key issue involves significantly dif-

ferent time–space scales of the solute and heat diffusion.

In other words, the values of the diffusion coefficient and

thermal diffusivity imply corresponding time–space

scales that differ from each other by an order of magni-

tude of 104 for the alloys under consideration, see Table

1. To solve these equations simultaneously and without

a special approach to the computational algorithm

would probably be impossible. Such an algorithm, and

the accompanied special computational grids for the

solution of these equations, will be proposed in [18],

and were used extensively in this work.

4.1. Computational algorithm and the numerical

approximation

The detailed computational scheme for solution of

the non-Fickian solute diffusion problem in isothermal

solidification, Eqs. (3.3.2) and (3.3.3), is given in Ref.

[17]. To handle the significant difference between physi-

cal length scales of heat and mass transfer (heat and sol-

ute diffusion) in a non-isothermal problem, an efficient

algorithm for the simultaneous solution of heat and

mass transfer equations, Eqs. (3.3.1)–(3.3.3) has been

developed. The key approach used by this algorithm is

to solve the equations of heat transfer (3.3.1) and mass

transfer (3.3.2) and (3.3.3) separately by using different

lattices along with the exchange of the computational

data between them [18]. The simultaneous solution of

the heat and mass transfer equations in a non-isothermal

solidification problem was realized by this algorithm

thanks to an acceleration of the calculation under the

well-distributed memory resources of a computer.

During the modeling of the solidification within the

calculated domain, data are stored in a separately cre-

ated binary file. Within this file, all of the computed data

for the series of pertinent functions (such as G, C, T,

etc.) are saved for every time step of modeling. For each

time step, a plot is formed defining the distribution of (a)

the fraction of the solid phase, (b) concentrations of the

solute (Si) within both liquid and solid phase, and (c)

temperature within the calculated domain. The algo-

rithm and numerical scheme have been constructed for

two different computational grids, i.e. separately for

the thermal grid and the solute diffusion grid. Using

such a multigrid method provides for an exchange of

the dynamical data between these grids in accordance

with the relation of the characteristic time scale and

lengths for heat and mass transfer.

Under the present experimental conditions we were

able to secure relatively small undercoolings and not

too large growth velocities. Therefore, we have assumed

in our modeling that the crystal growth shapes are deter-

mined mainly by the undercooling and anisotropy of

the surface energy. In addition to material�s parameters
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given in Table 1, we have taken the following parameters

for Eqs. (3.3.6)–(3.3.8): eC = 0.01, el = 0, hC = 0, and

hl = 0. In order to avoid grid anisotropy (which may

have an influence on results of the modeling) we applied

a special numerical procedure. The algorithm used can

be briefly described as follows (it will be discussed in

more details and with specific tests in [18]). First, we

have taken into account the well-known fact that the

grid selection influences the growth form due to various

orientations of elementary volumes with respect to the

vector of the growth velocity V (defined by the vector

orthogonal to the solid–liquid interface). Second, within

each elementary volume, we have computed the solid–

liquid contour as a function of the angle between the

velocity V and its projection on the x-axis and z-axis.

And, third, for the computation of the solid fraction G

in Eq. (3.3.4), we have taken into consideration both

the growth velocity and length of the contour of the

solid–liquid interface within each elementary volume.

In such a case, the vector V defines an advancement of

the interface and its growth direction, but the function

of the contour length takes into account the orientations

of every point at the interface with regard to origin(s)

and prevents the grid anisotropy. Such algorithm signif-

icantly decreases the influence of the grid anisotropy on

the crystal growth leading to physically isotropic struc-

tures which exhibit the tip splitting with isotropic prop-

erties of the solid–liquid interface.

4.2. Crystal pattern formation modeling

In the modeling, we have used the material parame-

ters given in Table 1. Results for the calculated domain

modeling for undercoolings of 14 K and 4 K and nomi-

nal concentration of 6.9 at.% are presented in Fig. 2.

The dimensionless amplitude d of the stochastic noise

in modeling of the growth kinetics is 0.05. The total cal-

culated domain is of the size of 100 · 300 lm, but the

domain presented visually in Fig. 2 is of the size of

100 · 100 lm only. One pixel in Fig. 2 is equal to

320 · a0 = 0.16 lm (where a0 is the size of the inter-

atomic distance, Table 1.) In Table 2, some additional

data regarding the performed calculations are compiled.

It should be noted that for both calculations pre-

sented in Fig. 2, the interval of the physical time re-

quired for solidification is not larger than 0.03 s.

Accordingly, the maximum of a temperature decrease

at the boundaries 1 and 2, see Fig. 1, is 2.7 K, relative

to T0 for the cooling rates of 4 K/s and 7 K/s (see the col-

or scales for Fig. 2). One can see that at the tip of a den-

drite the temperature has been increased (due to release

of the heat of solidification) with a great difference be-

tween the cases with different undercoolings: the temper-

ature change for the case of solidification with

DT = 14 K is approximately two times greater than for

the case of solidification with DT = 4 K) (see Table 2).
This fact is due to a more rapid crystal growth and more

intensive release of the latent heat at the dendritic tip for

the case of solidification with DT = 14 K.

For two different undercoolings one obtains qualita-

tively different crystal structures during solidification.

For DT = 14 K, one gets the single dendrite which is

growing from the initial substrate and with the devel-

oped dendritic ensemble behind it characterized with

much smaller growth velocity (Fig. 2). For DT = 4 K

one gets the growth of a dendritic ensemble (Fig. 2).

In order to explain this difference in selected structures

we applied an analysis of linear stability of Mullins

and Sekerka (MS) [19] as a first approximation. We as-

sume that perturbations at the planar interface during

solidification under the presented conditions during

brazing were generated a priory, i.e., not developed as

a consequence of the existence of the gradients of silicon

concentration and the imposed undercooling at the

interface. One may evaluate the (in)stability at the inter-

face by using an expression for the stability wavelength

kS below which the perturbations at the interface are sta-

ble as given by MS, i.e.,

kS ¼ b0
DC0

V Pjmejð1� keÞC0

� 	1=2

; ð4:2:1Þ

where VP is the velocity of the planar interface, and b0 is

a dimensionless fitting parameter which is close to unity.

For computations of kS versus VP we have used the

material�s parameters from Table 1. The results of com-

putations are shown in Fig. 3 for two undercoolings. As

it can be seen from the figure, the planar interface is

unstable in both considered cases of solidification.

Therefore, the difference in a selection of the dendritic

pattern shown in Fig. 2 is not in initial interface instabil-

ity but it should be attributed to the pattern selection at

the latest stages of the solidification process.

The results of the calculations for a range of nominal

concentrations between 5.5 and 8.5 at.% (see Table 1)

are illustrated in Fig. 4. As can be seen, a clear pattern

selection of a dendrite structure is again more noticeable

for a larger undercooling.
5. Analysis and discussion

This research has provided an evidence that in the

brazing process of an Al–Si system exposed to CAB

inert atmosphere the initial undercooling may have

the significant influence on morphology, if Si depletion

prior to quench is present. Such situation is inherent

to cases of re-solidification of micro-layers of Si rich

Al alloy over the Si lean substrate, as is the case of a

typical brazing process involving aluminum brazing

sheets.

A significant improvement of the model would be

achieved by an extension of the present solid solution



Fig. 2. Simulation of a solidification microstructure. Left column: Al + Si solid solution quenched following the cooling curve at 873 K

as presented in Fig. 3b [2]. Undercooling is equal to DT = 14 K, (a) a state of phases in the solidifying domain; (b) distribution of

temperature; (c) distribution of Si concentration in the liquid phase and solid crystal phase. The dashed line in (c) indicates the location

that corresponds to Fig. 5 concentration profile (numerical data). Right column: Al + Si solid solution quenched following the cooling

curve at 883 K as presented in Fig. 3b [2]. Undercooling is equal to DT = 4 K.
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Table 2

Description of the large domain modeling of solidification microstructures for experimental results presented in Fig. 1 [2]

Modeling presented

in Fig. 2

Item Microstructure presented

in Fig. 1a [2]

Microstructure

presented in Fig. 1b [2]

General info Size of calculated domain: 100 · 300 lm Calculations are made in the

laboratory reference frame

Calculations are made

in the laboratory

reference frame

Initial undercooling (K) 14 4

Cooling rate (K/s) 7 4

Calculated time interval (s) 4.66 · 10�3 2.83 · 10�2

Inset (a) Phase-state distribution

(crystal, liquid, and the solid–liquid interface)

Single dendrite Dendritic ensemble

Inset (b) Temperature distribution (K) 0.0 < T � T0 < 2.67

Inset (c) Concentration of Si distribution in the melt (–) 1.04 < C/C0 < 1.13

Concentration of Si distribution in the solid (–) 0.60 < C/C0 < 0.78

Velocity At the tip of the more developed dendrite (mm/s) 18.65

Temperature increase

with respect to T0

At the tip of the more developed dendrite (K) 2.23 0.33

Fig. 3. Prediction of the Mullins–Sekerka theory [19] for the

critical wavelengths of perturbation on a planar interface (solid

curve) in comparison with the present numerical data (solid

circle is for DT = 14 K and solid square is for DT = 4 K). The

curve shows the demarcation line above which the planar

interface is unstable. Modeling data points were extracted on

the initial stages of the interface instability.
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solidification model to the dendritic/eutectic alloy solid-

ification. In Fig. 5 the difference between the model and

the actual conditions is indicated in terms of the dimen-

sionless concentration distribution of the solute in and

around the dendrite stem for: (1) the numerical model,

see Fig. 2c, left column, and (2) experimental data [2].

The dashed line in Fig. 2c indicates the position of a

cross-section through the liquid and solid phases from

which the data for Fig. 5 are taken. The experimental

data points indicated in Fig. 5 were obtained from the

electron probe microanalyzer (EPMA) linear scans

made through an alpha phase grain located within the
joint zone (solid state) [12]. The numerical values are

dimensionalized as follows: (1) the length coordinate is

scaled by the corresponding characteristic dimension

of the solid solution/alpha phase stem/grain, so that its

region is between 0 and 1 on the abscissa, for both

numerical and experimental data, and (2) the concentra-

tion level is scaled by the solute concentration in the

melt (assumed to be equal to the nominal Si concentra-

tion, see Table 1).

As can be seen from Fig. 5, the general behavior of

concentration obtained from the modeling data is the

same as was obtained from experimental data. Quanti-

tatively, a disagreement between experimental mea-

surements and modeling data occurs in vicinity of

the boundary of the dendrite stem and surrounding

matrix. These differences can be explained by the pres-

ence of eutectic microstructures with higher concentra-

tion of silicon in the experiment during and after

solidification. The present model does not include the

eutectic precipitation; however, it still provides basic

qualitative agreement with the experimental data,

Fig. 5. Within the stem of a dendrite, the computed

behavior of the Si concentration is sufficiently good

compared with the experimental data, both qualita-

tively and quantitatively. Note that Si concentration

is determined within the error margin of at least

0.05 wt.%, [12]. However, it should also be noted that

both in model calculations and experimental data, the

concentration within the core of dendrite has a clear

tendency to a local increase (see Fig. 5, at the abscissa

equal to 0.5). This feature can be explained by higher

trapping of silicon during the non-steady, transient re-

gime of the solidification when the core of the dendrite

stem is forming.



Fig. 4. Simulation of a solidification microstructure, Al + Si

solid solution formation from an equivalent melt at nominal

concentrations of 6.9 (a, b), 8.5 (c) and 5.5 at.% Si. The quench

is from 873 K (a, c) and 883 K (b, d), [24].
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Fig. 5. The concentration profiles for Si across a solid solution/

melt cross-section. Numerical data marked by a solid line and

open circles. Experimental data indicated by solid points and

dashed line.
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Some questions raised in the course of this investiga-

tion still await satisfactory answers. For example, it may

be very useful for a further model development to clarify

why the structure presented in Fig. 2. left column, exhib-

its a forest of cells and dendrites behind the unique se-

lected dendrite. In contrast to the modeling data, Fig.

2, the actual experimental structure shown in Fig. 1a,

[2], does exhibit a free-dendritic pattern in the alloy.

One possible contributing factor to this discrepancy

(note that in some experiments more than a single den-

drite is present even for lower temperatures at the onset

of quench, but certainly not so numerous as at the

higher peak temperatures), may be that after selection

of a single dendrite from the dendritic forest (due to pat-

tern selection mechanism occurring at the latest stages of

solidification, see, e.g. Ref. [20]), a remelting mechanism

may come into action (due to a release of the latent heat

within the solidifying domain). To verify this idea, it is

necessary to provide detailed modeling of a sequence

of both processes, i.e., solidification and melting.

Finally, an important issue related to the modeling

approach adopted in this study deserves an additional

comment. We have taken into account the role of the

crystalline anisotropy in crystal growth. Analytically,

this influence can be considered with using the solvabil-

ity theory [21,22]. The solvability conditions are now

well defined only for pure one-component systems where

the anisotropy of surface energy and/or the growth

kinetics is included by a model of dendritic growth

[22]. Very recently, the conditions of solvability have
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been established in pure systems for both the anisotropy

of surface energy and growth kinetics of the dendritic

interface in comparison with the predictions of the

phase-field model [23]. So, for the considered Al–Si

alloy, we introduced the anisotropy of the surface energy

into the model (see Section 4.1 and also equations in

Section 3.3 in which we take into account the finite

anisotropy strength eC of the surface energy and the zero

value for the anisotropy strength el of the kinetics) for a

prediction of the kinetics of the dendritic growth.

In the developed numerical model (see Section 3.3),

the anisotropy of the grid has been reduced drastically

to resolve the problem numerically with taking into ac-

count both anisotropic properties of the interface. The

simultaneous solution of two very different-scaled pro-

cesses (i.e., heat diffusion and solute diffusion) required

significant computational time and sizable computer�s
memory (for examole, we have used a node of a HP

N-4000 supercomputer having 8 PA-RISC 8500 @

440 MHz with 8GB RAM of memory).
6. Conclusions

For detailed 2D modeling we have used the model of

local non-equilibrium solidification and developed it

within the framework of the two-phase mushy zone.

The present model of the two-phase mushy zone for

the non-isothermal solidification extends the previously

developed isothermal model of the solidification within

the mushy zone. The developed system of model equa-

tions has been solved numerically and the model predic-

tions were compared with the empirical findings related

to dendritic microstructures for cases of relatively slug-

gish solidification kinetics.

From the results of modeling it can be concluded that

the initial undercooling DT from which the solidification

in the alloy starts to evolve is the main governing param-

eter of the pattern evolution in the solidification process

during aluminum brazing. We identified a transition

from the ensemble of dendrites (compare Fig. 1b [2]

and Fig. 2) to the unified free dendrite (compare Fig.

1a [2] and Fig. 2) respectively. The reason why such a

transition can occur might be seen in (i) rapid decreasing

of undercooling around the interface for DT = 14 K and

a more developed constitutional undercooling around

the interface for DT = 4 K, and (ii) the existence of a

competition between the solute diffusion and the surface

tension during the transient period of solidification when

the selection of wavelengths at the latest stages of solid-

ification takes place.
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